A single-atom electron spin qubit in silicon

2013.03.27 강병기

J. J. Pla, et al. Nature <u>489</u> 541 (2012)

Contents

- Introduction: qubit
- Single qubit device
 - Single Electron Transistor(SET)
 - Performance property: ESR Pulsing scheme
- Coherent control: Rabi oscillations
- Coherence time: Measuring T₂
- Summary

Introduction

- Spin ½: Candidate of qubit
- To realize
 - Fabrication
 - Initialization
 - Single qubit operation
 - Reading
 - Coherence
 - Double qubit operation: entanglement

Device

- Si substrate
- Al gate
- P ion implantation
 - It's like H atom in Si

D

- Single electron transistor(SET)
- Operating environment
 - *B*₀ ~ 1 T
 - *B*₁ ~ 30 GHz, ~0.1 mT
 - 300 mK

SET

- Property
 - The SET is made by placing 2 tunnel junctions in series
 - The 2 tunnel junction create what is known as a """
 "Coulomb Island" that electrons can only enter by tunneling through one of the insulators.
 - Since tunneling is a discrete process, the electric charge that flows through the tunnel junction flows in multiples of the charge of electrons *e*.
- Coulomb blockade
 - The effect in which electron can not pass through the island unless the energy in the system is equal to the Coulomb energy e²/C.
 - Coulomb blockade tries to alleviate any leak by current during the off state of the SET.

ESR Pulse scheme

Donor P in Si

- $H = \gamma_e B_0 S_z \gamma_n B_0 I_z + AS \cdot I$
- $v_{e1} \approx \gamma_e B_0 A/2$
- $v_{\rm e2} \approx \gamma_{\rm e} B_0 + A/2$
- V_{PL}: donor level control
 - Mode change
- *i*_{ESR}: *B*₁ ESR pulse
 - Qubit control
 - Freq.: v_{e1} , v_{e2}
- I_{SET}: drain current
 - Reading qubit state

Rabi oscillation

- $t_{\rm P}$: B_1 ESR pulse duration
- f_{\uparrow} : electron spin-up fraction
- P_{ESR}: power of ESR pulse
 - $P_{ESR}^{1/2} \propto \gamma_e B_1$
- *f*_{Rabi}: Rabi frequency 1/*t*_P
 - $B_1 \cdot t_P = \text{constant}(\text{angle})$

Coherence time

- T₂ measuring
- Decoherence source
 - Diffusion of ²⁹Si
 - Noise in external field
 - Paramagnetic defects
 - Charge traps at interface
- Spin echo technique: e
 - T₂* ~ 55ns
- Hahn echo : a, c
 - T₂ =206 ± 12 μs
- XYXY dynamic decoupling: b, d
 - T₂ =410 ± 20 μs

Summary

- Single-qubit realization with single atom electron with P ion in Si
 - Fabrication of SET
 - Operation with pulse-ESR
- Rabi oscillation: demonstration of coherence control
- Measuring T₂: coherence time
 - Hahn echo
 - XYXY dynamic decoupling